Finding a good approximation of the top eigenvector of a given d × d matrix A is a basic and important computational problem, with many applications. We give two different quantum algorithms that, given query access to the entries of A and assuming a constant eigenvalue gap, output a classical description of a good approximation of the top eigenvector: one algorithm with time complexity d^{1.5+o(1)} and one with time complexity \tilde{O}(d^{1.75}) that has a slightly better dependence on the precision of the approximation. Both provide a polynomial speed-up over the best-possible classical algorithm, which needs Ω(d^2) queries to entries of A (and hence Ω(d^2) time). We extend this to a quantum algorithm that outputs a classical description of the subspace spanned by the top-q eigenvectors in time qd^{1.5+o(1)}. We also prove a nearly-optimal lower bound of \tilde{Ω}(d^{1.5}) on the quantum query complexity of approximating the top eigenvector. Our quantum algorithms run a version of the classical power method that is robust to certain benign kinds of errors, where we implement each matrix-vector multiplication with small and well-behaved error on a quantum computer, in different ways for the two algorithms.
Our first algorithm used block-encoding techniques to compute the matrix-vector product as a quantum state, from which we obtain a classical description by a new time-efficient unbiased pure-state tomography algorithm that has essentially optimal sample complexity O(d log(d)/ε^2) and that comes with improved statistical properties compared to earlier pure-state tomography algorithms. Our second algorithm estimated the matrix-vector product one entry at a time, using a new “Gaussian phase estimation” procedure. We also develop a time-efficient process- tomography algorithm for reflections around bounded-rank subspaces, providing the basis for our top-eigensubspace estimation application.
This is the joint work with Ronald de Wolf and András Gilyén.