Cette thèse introduit un cadre basé sur les données qui comble le fossé entre le traitement neurolinguistique observé dans le cerveau humain et les mécanismes computationnels des systèmes de traitement automatique du langage naturel (TALN). En établissant un lien direct entre les techniques d'imagerie avancées et les processus de TALN, elle conceptualise le traitement de l'information cérébrale comme une interaction dynamique de trois composantes critiques : le « quoi », le « où » et le « quand », offrant ainsi des perspectives sur la manière dont le cerveau interprète le langage lors de l'engagement avec des récits en conditions écologiques. L'étude fournit des preuves convaincantes que l'amélioration de l'alignement entre l'activité cérébrale et les systèmes de TALN offre des avantages mutuels aux domaines de la neurolinguistique et du TALN. La recherche montre comment ces modèles computationnels peuvent émuler les capacités de traitement du langage naturel du cerveau en exploitant les technologies de réseau neuronal de pointe dans diverses modalités - langage, vision et parole. Plus précisément, la thèse met en lumière comment les modèles de langage pré-entraînés modernes parviennent à un alignement plus étroit avec le cerveau lors de la compréhension de récits. Elle examine le traitement différentiel du langage à travers les régions cérébrales, le timing des réponses (délais La fonction de réponse hémodynamique (HRF)) et l'équilibre entre le traitement de l'information syntaxique et sémantique. En outre, elle explore comment différentes caractéristiques linguistiques s'alignent avec les réponses cérébrales MEG au fil du temps et constate que cet alignement dépend de la quantité de contexte passé, indiquant que le cerveau code les mots légèrement en retard par rapport à celui actuel, en attendant plus de contexte futur. De plus, elle met en évidence la plausibilité biologique de l'apprentissage des états de réservoir de calcul, offrant ainsi une interprétabilité, une généralisabilité et une efficacité computationnelle dans les modèles basés sur des séquences. En fin de compte, cette recherche apporte des contributions précieuses à la neurolinguistique, à la neuroscience cognitive et au TALN.