Les communautés microbiennes sont des systèmes complexes composés de diverses espèces de micro-organismes interagissant entre elles et avec leur environnement. La biologie des systèmes offre un cadre pour leur étude, alliant expérimentation, génération de données à haut-débit et leur intégration dans des modèles informatiques. La compréhension de ces communautés passe notamment par celle de leur métabolisme et des échanges de molécules entre espèces susceptibles d'impacter positivement ou négativement chacun des membres. Le métabolisme est un ensemble de réactions biochimiques et peut s'abstraire à l'échelle d'un génome par des réseaux faisant le lien entre les gènes et les réactions d'un organisme. Ces réseaux permettent de construire des modèles métaboliques, représentations informatiques ou mathématiques du comportement des organismes dans des conditions expérimentales. Le passage de l'individu à la communauté, composée de quelques espèces en conditions contrôlées, ou de plusieurs centaines en conditions environnementales, soulève des difficultés méthodologiques dans la construction des modèles. Ce manuscrit de thèse traite de la modélisation du métabolisme et des interactions métaboliques au sein des écosystèmes microbiens en mettant l'emphase sur l'explication des mécanismes cellulaires qui justifient les interactions bactériennes. Des solutions numériques sont majoritairement utilisées - assurant la précision des résultats - mais sont confrontées à l'importante combinatoire engendrée par les interactions bactériennes pour des communautés de grande taille. Les réponses apportées par les approches discrètes surmontent la problématique du passage à l'échelle mais sont limitées à une analyse par paire d'organismes. Afin d'identifier un potentiel ajustement méthodologique - conciliant les avantages des deux démarches, i.e. trouver une approche hybride - une première contribution se focalise sur le développement d'un modèle numérique dynamique et précis d'une communauté fromagère composé de trois souches. Notre stratégie itérative a permis l'intégration de données hétérogènes au moyen d'étapes de raffinement et de calibration dynamique. Ces allers-retours entre la connaissance et le modèle ont assuré la bonne prédiction des concentrations des métabolites dosés en métabolomique ainsi que des densités bactériennes au cours de la cinétique de fabrication du fromage. Dans une seconde contribution, nous proposons un modèle par raisonnement permettant de cibler des potentiels de coopération et de compétition dans des communautés bactériennes. Ce modèle repose sur l'inférence de règles logiques inférées de la biologie pour évaluer et comparer les potentiels d'interaction de communautés. Des potentiels d'interaction spécifiques à des écosystèmes ont été révélés ainsi que la pertinence de son utilisation grâce à sa rapidité d'exécution. Enfin, la troisième contribution est une réflexion portant sur l'enrichissement du modèle logique. Nous proposons un prototype s'appuyant sur l'inférence de règles logiques et permettant de (i) sélectionner la meilleure communauté à partir de contraintes biologiques et (ii) d'apporter une notion temporelle, pouvant influencer les potentiels d'interactions. Par cette thèse, nous avons montré que la construction d'un modèle de modélisation hybride du métabolisme n'est pas nécessaire, mais qu'une approche hybride, utilisant des modèles numériques, pour des communautés de petites tailles et des modèles discrets, pour analyser rapidement les communautés de taille réelle semble être pertinente.